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Perimeter analysis of the Von Koch island,

application to the evolution of grain boundaries
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This paper introduces an analyse of the fractal dimension by Richardson’s method. Two
different ways to calculate the fractal dimension are presented with their related calculation
errors and applied the Von Koch curves. A Monte-Carlo simulation of the evolution of the
grains’ boundaries when heating shows that the interfaces lose their fractal characteristics as
reported in experimental work. This result is interpreted by dissipation of the energy during the
evolution of the grain boundary. C© 2006 Springer Science + Business Media, Inc.

1. Introduction
Quantitative observations about microstructures related to
mechanical or physical properties give information on the
mechanisms involved, and fundamental knowledge about
the distribution particles’ sizes is essential to industrial
processes. In classical studies the shape of the particles is
described by stereological parameters such as the mean
size, the shape factor, the surface/volume ratio, the con-
nexity [1, 2] and considerable interest has been expressed
in quantitative analysis to minimise the subjectivity of vi-
sual assessment. However, classical methods do not take
into account the Kostron’s observation [3] about the de-
pendence of the size and area fraction of microstructural
features upon the magnification used to examine the ma-
terial. In the same way, in Geoscience, Richardson [4]
who studied the cartographic boundaries on map surfaces
found that the length of the coastline of Britain (L) is
not unique but depends on the length of the divider (ε),
also called the yardstick, used for the measurement. A
straight line with a negative slope results from plotting
the length of the coast versus the length of the divider in
log-log co-ordinates. Mandelbrot [5] pointed out the fun-
damental properties of the non-standard scaling law and
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answered Richardson’s question ‘How long is the coast-
line of Britain’ when developing the fractal concept. Frac-
tal analysis admits that the concept of length of irregular
objects depends on the size of the measuring yardstick.

The divider method, also called the yardstick or the
compass method was extensively applied to treat differ-
ent boundary surfaces such as rain and clouds [6] cerebral
cortex of mammals [7] or quantification of crushed talc
concentrate [8]. In our main field of interest, i.e. materi-
als, examples can be found in fracture mechanics [9–11],
creep [12, 13], wear [14], corrosion [15, 16], solid-liquid
interface morphology [17]. The compass method used to
measure profiles or perimeter lengths, is often associated
with the Slit Island Method (SIM) introduced by Mandel-
brot [9, 18]. SIM proceeds from the relationship between
the perimeter (P) of the island versus its area (A) related
by log P = 0.5 �logA, where � is the fractal dimension
of the island’s profile.

Numerous algorithms are reported in literature to mea-
sure the length (or perimeter) of a profile (or island) and
to calculate the fractal dimension. The validity of these
algorithms is often tested on the Von Koch islands, the
fractal dimension of which is perfectly known. In spite

0022-2461 C© 2006 Springer Science + Business Media, Inc.
DOI: 10.1007/s10853-006-5090-5 2509



of all this attention, some crucial aspects of the problem
seem to have been left unsolved and are still under dis-
cussion [14, 20–25]. The aim of this paper is to analyse
the numerical artefacts of Richardson’s method when ap-
plied on the Von Koch island [26]. This fractal curve,
often used to test algorithms, is chosen because its frac-
tal dimension is perfectly known and is used in fracture
mechanics to model the crack branching process during
the propagation of running cracks [19] or as fractal model
of ruptured surfaces [27]. We then provide an original
method to compute the fractal dimension of image fea-
tures and apply it to Monte-Carlo simulations of grain
boundaries when heating.

2. The Von Koch island
2.1. Historical background
In 1904, the Swedish mathematician Helge Von Koch [3]
introduced curves, which present two main characteris-
tics:

• There is no way to fit a unique tangent and as a
consequence they cannot be differentiated.

• They are self-similar: each part of one curve has the
same shape regardless of its size.

The Von Koch curves belong to the important class
of fractal curves obtained by Iteration Function System
[28, 29] and do not possess any analytical mathematical
expression. Therefore because of discretisation, resolu-
tion effects or else related to mathematics and statistics
we might have difficulty in applying mathematical laws
to estimate the fractal dimension on experimental data.
Before calculating the fractal dimension of experimental
curves, it seems interesting to analyse the artefacts on the
well-known Von Koch curves to gauge the effect of these
errors.

2.2. The definition of the Von Koch island
The Von Koch triadic island is defined as in Fig. 1a.
The initiator is a triangle (α = 60◦) with side length
L0. The construction consists in replacing each segment
of the initiator by the generator (a segment of edge length
one third of the initial length) and to repeat this process in-
definitely. The first four generations are shown in Fig. 1b.

The length of the Von Koch island (perimeter P) is first
determined by the following procedure:

Initial : P0 = 3L0

First generation : P1 = 3 × 4 × ε1, with ε1 = L0/3

Second generation : P2 = 3 × 42 × ε2, with ε2 = ε1/3

nth generation : Pn=3 × 4n×εn, with εn = εn−1/3

It follows that : 4n = Pn
/

3εn and 3n = P0/3εn

By eliminating n from the above equation it is shown
that:

Pn = P D
0 (εn)1−D (1a)

where D = ln4/ln3 is the self-similarity dimension.
When α is different from 60◦, similar reasoning leads

to:

D = ln 4/ln [2 (1 + cos α)] (1b)

When calculating the length with a measuring yardstick
η, Equation 2 and 3 are often reported in bibliography:

P(η) = P D
0 (η)1−D (2)

P(η) = P0 (η)1−D (3)

The fractal dimension is a constant related to the slope
of the linear form of Equations 2 and 3 plotted in log-log
co-ordinates.

These formulations may lead to a false interpretation
of the physical process. Equation 2 is true only if η ∈ H
where H = { L0

3 , L0
32 , . . . L0

3n }. This set is discreet meaning
that Equation 2 is almost never true and will always be
false if the graph is not defined by a set of segments of
equal lengths (like the circle). This relation will be true
to the limit (small η ∈ H) by applying the Minkowski
Bouligand dimension, noted �, [18, 28] defined by:

� = lim
η→0

[
ln N (η)

ln |η|
]

(4)

where N(η) is the number of segments used to recover the
curve.

For the Von Koch island, Equation 2 gives � =
lim

n→∞[ ln 4n

ln|L0/3n| ] = ln 4/ ln 3 = D. The fractal dimension

and the self-similarity dimension are exactly the same
only if the yardstick’s length is the generator correspond-
ing to the nth iteration, if n tends to infinity and if there
is no recovering during the creation of the fractal. As
some recovering can appear during the fractal construc-
tion, which artificially increases the computational length,

Figure 1 The triadic Von Koch island. (a) the initiator (A1), the generator
and its application (A2) and (b) first (B1), second (B2), third (B3) and fourth
(B4) iterations.
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Figure 2 Variation of the perimeter length versus the yardstick size (in log-log co-ordinates) for a triadic 3 Von Koch island with a Self-similarity dimension
D = 1.1, 1.5 and 1.9. The island is defined on a 2048 × 2048 pixel grid shown on the graph. The continued line represents the theoretical perimeter and the
doted one the regression line.

the self-similarity dimension may be higher than the frac-
tal dimension. Tricot [28] has proposed a criterion that
does not apply to the stochastic fractal curves encountered
in the Material Science. The calculation of the fractal di-
mension will be very hard to process [30] when recovering
appears. Equation 3 (where Po is a constant) proposed by
Richardson [4] and quoted by Mandelbrot [31] does not
respect the dimension equation. Indeed the dimension of
the left part of Equation 3 is length and that of the right
part is (length)1−D. This form is inaccurate for algebric
calculations in analytical relations where scaling factors
are introduced.

3. Numerical analyses
In this study, all curves investigated are defined by a 2048
× 2048 resolution pixels which corresponds to the current
resolution of a CCD camera used to record the material
morphology by optical microscopy. The Iterated Function
System [28] is used to create fractal curves. We first define
the co-ordinates of the initiator (polygon) and of the gen-
erator. Secondly the number of iterations (or steps) used to
construct the Von Koch curves (or another fractal curves)
is manually chosen, and finally the Von Koch curves are
created by a recursive procedure using vectorial notation.
At the end of the last iteration, the fractal is defined by a
set of co-ordinates. Thanks to this vectorial representation,
the curve is constructed without any discretisation error
(neglecting the error in the representation number). The
number of co-ordinates of the Von Koch flake obtained
by iterations for a p-sided polygon initiator is given by p
× 4i. Then a resolution of image is chosen (n × n pixels)
and the fractal image is built by connecting each succes-
sive co-ordinate by a segment. At this stage, discretisation

error appears. At least, images are generated and saved in
PCX version 5 graphic format. This format is recognised
by a high number of graphic viewers, image conversion,
or image analysis programs and then allows us different
treatments (note that usual software is generally limited
in resolution size. . .). We shall now produce some triadic
Von Koch flakes with fractal dimensions varying from
1.1 to 1.9, and discretised in 2048×2048 pixels with a
yardstick size varying from 1 to 800 pixels. Fig. 2 rep-
resents the variation of the perimeter length versus the
yardstick size for fractal dimensions 1.1, 1.5 and 1.9. For
short yardsticks, the perimeter is more and more under-
estimated as the fractal dimension increases. The length
of the underestimation range increases exponentially with
the fractal dimension. This can be explained by the fact
that the fractal dimension increases with the length of the
initiator and consequently with the size of the lowest num-
ber of εn in the Koch construction. Let εn be the size of the
final yardstick after n iterations of the Koch construction.
With the same mathematical statements as in Equation 1,
D = ln 4/ln [2 (1 + cos α)] andεn = L0/[2 (1 + cos α)]n

and eventually:

εn = L0/10
n log 4

� (5)

Then a second software is used to calculate the perime-
ter length P(η) with a measuring yardstick η.

Two methods can be stated to estimate the slope of the
log-log plot:
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T AB L E I Values of the fractal dimension obtained from Von Koch
islands of different theoretical fractal dimensions �t shown in Fig. 2. The
calculated fractal dimensions �c are evaluated from the two numerical
methods described in the text ηmin and ηmax represent the domains of the
yardstick variation (in pixels) when fractal dimension is estimated

Method
(�t)

ARYV MSMV

�c ηmin ηmax �c ηmin ηmax

1.1 1.102 1 800 1.099 1 580
1.2 1.181 1 800 1.183 2 573
1.26 1.224 1 800 1.231 2 609
1.3 1.248 1 800 1.267 4 619
1.4 1.306 1 800 1.352 5 645
1.5 1.352 1 800 1.438 7 672
1.6 1.389 1 800 1.537 14 691
1.7 1.417 1 800 1.644 24 717
1.8 1.439 1 800 1.737 30 737
1.9 1.462 1 800 1.826 35 755
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Figure 3 Values of the fractal dimension obtained from Von Koch islands
of different theoretical fractal dimensions �t shown in Fig. 2. The calcu-
lated fractal dimensions �c are evaluated from the two numerical methods
described in the text.

3.1. Method one: all range of the yardstick
variation (ARYV)

The slope is calculated taking all the perimeters computed
with different ruler lengths varying from 1 to 800 pixels.
Table I shows that the fractal dimension is more and more
underestimated as the fractal dimension increases. That
can be explained by the fact that ε5 increases with the
fractal dimension and that the part of underestimation of
the perimeter decreases the slope of the log-log plot. The
calculated fractal dimensions are lower than 1.5. This
method is not accurate to calculate the highest fractal
dimensions and the yardstick range cannot be chosen at
random to estimate the fractal dimension as accurately as
possible (Fig. 3).

3.2. Method two: the maximal slope
with minimal variation (MSMV)

To evaluate the set of perimeters that is significantly less
than the expected one, the following method is used:
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Figure 4 Values rj and �i versus the minimal size of ηi (in pixel) for the
Von Koch of theoretical fractal dimension of 1.8. We obtain rmax = 27.5
those give a fractal dimension of �max = 1.74.

Let E = {(log η1, log P (η1)) , (log η2, log P (η2)) ,

. . . , (log ηn, log P (ηn))} with η1 < η2 < ηn be the set
of the log-log plot. The Fractal dimension �j is calcu-
lated by the linear least square method from the setE j =
{(log η j , log P(η j )), (log η j+1, log P(η j+1)), . . . , (log
ηn, log P(ηn))}. As the perimeter is underestimated for
small yardsticks, the fractal dimension increases with in-
creasing j until a critical value corresponding to the first
significant oscillation in the log-log plot. To avoid absurd
points that will increase the slope artificially, the stan-
dard deviation of the fractal dimension is minimised, the
unbiased standard deviation sj of the residuals (observed
perimeter minus calculated perimeter with the slope 1 −
�j) is computed and the following estimator r j = � j

s j

(which seems a ratio signal—noise) is built. By calculat-
ing all rj from all the sets Ej (with 1 ≤ j < n, n is given by
ε1 according to Equation 5), �max is obtained for the first
highest value rmax. Fig. 4 represents rj and �j versus the
minimal yardstick size for the Von Koch flake with a 1.8
theoretical fractal dimension. As we found rmax = 27.5
(which gives a fractal dimension of �max = 1.74) the yard-
stick must be higher than 30 pixels to estimate precisely
the fractal dimension. Table I shows that ε5 (column ηmin,
method 3) matches well with the shortest segment of the
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Figure 5 Evolution of ηmin versus the theoretical fractal dimension.
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Von Koch flakes ε5 obtained by the flake constructor. It
is then possible by this algorithmic method to approach
the values of ε5 without knowing the fractal construction
parameter (Fig. 5). However, ε1 is imposed by the fractal
construction parameter and this method could not be ap-
plied without knowing ε1 i.e. the largest segment of the
fractal constructor.

4. Monte Carlo simulation of diffusion
on the Von Koch flakes

We propose to analyse the evolution of the grains’ bound-
aries when heating by using a fractal model of diffusion
on a fractal interface. Many analytical models allow us
to represent the evolution of the grain size when heating.
These models, which suppose that profiles can be derived
to integrate differential equations, do not apply to fractal
surfaces. In most of these models, the equations contain
the radius of the grain. However, a local radius has no
physical or mathematical sense for a fractal interface. As
a consequence, analytical models do not include the frac-
tal aspect of the interface. No differential equation can be
stated for these particular interfaces and we have decided
to model the evolution of the interface when heating by a
Monte Carlo simulation.

Experimental work related to the evolution of the frac-
tal dimension of the grains’ boundaries when heating are
reported in literature. Rubio et al. [35] have studied the
effect of heating on the fractal dimension of a ZrO2 pow-
der. When heating from 125◦C up to 1000◦C at the rate
of 1◦C/mn the fractal dimension is experimentally found
to decrease from 1.84 to 1.47. Tanaka [36, 37] shows that
the fractal dimension of grain interface is correlated with
the fractal dimension of the ruptured surface for six dif-
ferent materials. Streitenberger et al. [38] have measured
the fractal dimension of Zn grains when heating for 15′ at
696◦ C, 796◦C or 896◦C. For this last temperature, they
noted that � decreases from 1.15 to 1.04 and concluded
that the initial fractal dimension of the interface plays an
important part in the kinetics of the diffusion process.

4.1. The Monte Carlo model
The algorithm used to simulate diffusion at the grain
boundary was first developed by Anderson et al. [39].
The grain structure is modelled by a matrix, each element
of which, we called cell, is affected by a spin that repre-
sents the grain orientation. The Monte Carlo simulation
can be summed up by 6 steps:

1. A cell (i, j) of the matrix of size n2 is chosen at
random.

2. The energy of the spin is calculated according to the
Hamiltonien Ei, j = −J

∑6
k=1 δSi, j,Sk .

where Ei, j is the energy of the cell (i, j), J the interfacial
energy of the grain, Sk the cells neighbouring (i, j) and

δSi,j,Sk the kronecker symbol (=1 if spin k equals the spin
of the (i, j) cells and zero elsewhere).

3. A new spin is chosen at random.
4. If the energy of the spin is minimised then the spin

of the cell (i,j) is changed,
5. Steps 1 to 4 are repeated n2 times and represent 1

MCS (Monte Carlo Step).
6. Then another MCS is constructed by repeating steps

1 to 5 and so on.

4.2. The software
A computer program was developed in order to simulate
the Monte Carlo algorithm in the C++ language. At dif-
ferent MCS, an image in PCX format is put out and our
algorithm described earlier is used to calculate the differ-
ent fractal parameters. The software is optimised to store
only in memory the co-ordinates of the interface thanks
to a double list of pointers.

4.3. Modelling of the initial fractal grain
structure

During solidification, the grain interface presents a fractal
structure [40, 41]. To construct such fractal boundaries,
Von Koch island, with D = 1.5, are duplicated to obtain
an image size of 3000 × 2000 pixels with five iterations
of the generator (Fig. 6). The central flake is centred on
the matrix and the borders of the matrix join the adjacent
grains. We can admit that during the heating phase, the
interface energy is minimised, and with such a configu-
ration, the central grain area is constant when simulating
the heating process.

4.4. Monte Carlo simulation
The 8192 steps of the Monte Carlo simulation take around
10 min on a Pentium 2 GHz with 512 Mo memory. Fig. 6
represents the evolution of the fractal grain when heating
for different MCS (64, 128, 512, 2048, 8192 MCS). The
following remarks can be stated from this simulation:

1. The grain area is constant during the simulation.
Adjacent grains are pinned and no grain growth occurs.

2. No anisotropy arises during the simulation.
3. As time increases, the fractal curve looks like a Von

Koch flake with fewer and fewer iterations. Diffusion suc-
cessively erodes the shape created by the iterations of the
initial Von Koch flake and all the generation steps of the
Von Koch island are found as heating time increases.

4.5. Calculation of the fractal dimension
The perimeter is then computed for different heating times
and yardstick lengths. Fig. 7 represents the variation of the
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Figure 6 Heating simulation by Monte Carlo method. The initial fractal dimension of the shape is 1.5 with five iterations of the generator. Figures show
effect of heating for 64, 128, 512, 2048 and 8192 Monte Carlo Steps (MCS).
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Figure 8 The threshold of defractalisation in pixel versus the MCS heating
time.

perimeter versus the yardstick length for different heating
times in MCS. Five important remarks have to be stated:

1. For a given yardstick length, the measured perimeter
decreases with the heating time since the diffusion process
decreases the apparent surface energy. As a consequence,
the perimeter is minimised as the heating time increases
whatever the scale of the measure.

2. For infinite heating times (here 8192 MCS) the
grains tend to a hexagonal form that represents the equi-
librium state. Energy is used by mass transport to smooth
the interface without increasing the grain size, and every
model of grain growth must include this mass transport.
This result can explain why all models that do not include
the mesoscopic geometry of interfaces overestimate the
experimental growth law [33].

3. When the heating time increases, the perimeter be-
comes constant for a large range of small yardsticks,
meaning that � = 1 and that the interface is seen as
Euclidean in this scale range. The threshold between the
fractal regime and the Euclidean one is determined and
Fig. 8 represents the variation versus heating time. A lin-
ear relation is found: εc = 0.025±0.002tMCS + 10±5 with a
correlation coefficient of r = 0.99.

As MCS step is proved proportional to the real heat-
ing time [42–45], we can infer that the scale length
range in which we can admit the interface as non-
fractal varies linearly with the heating time. Then, it be-
comes obvious that the definition of self-affinity does
not hold and that Equation 1 to 3 can not be used to
calculate the fractal dimension. Consequently, Richard-
son’s method cannot be applied to calculate the fractal
dimension of grains’ boundaries, while Equation 4 can.
However, Equation 4 can only be used analytically and
no numerical estimation can be found.

Nevertheless a local fractal dimension can be calcu-
lated by Richardson’s method by plotting the regression
line including points after the threshold. This line is drawn
in Fig. 7. It is then possible to plot the fractal dimension
calculated without taking or not into consideration the
threshold (Fig. 9). The least important fractal dimension
without threshold (ARYV) results from the loss of frac-
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Figure 9 Values of the fractal dimension calculated by both the ARYV and
MSMV method versus the MCS heating time.

tality of the perimeter for the short yardstick length. After
this threshold, the linear relation can approximate the re-
lation between the perimeter and the yardstick size (in
log-log co-ordinates). In both cases, � decreases when
the heating time rises. Even after the threshold, the frac-
tal dimension decreases because some parts of the frac-
tal have been eroded by diffusion, which minimises the
perimeter’s length. The fractal dimension converges to 1
meaning that the fractal tends to become Euclidean curve.

By analysing the different extrema in the log-log plot,
it is shown that the peaks’ amplitude decreases with heat-
ing time (Zoom in Fig. 7). For a given heating time, the
decrease is more and more important as the yardstick size
decreases. As we have proved that the maxima allow us
to approximate the real perimeter, this result proves that
the fractal dimension depends on the scale of measure-
ment. However, curves are also fractal but do not possess
the self-similarity structure of the initial Von Koch island.
Then the local fractal dimension has to be computed.
For these calculations, the method described above does
not hold because the curve is not self-similar. Therefore,
the local fractal dimension is calculated by the regres-
sion between two adjacent peaks. The values of this local
fractal dimension are shown in Fig. 10 for different po-
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Figure 10 Calculation of the local fractal dimension through the regression
line between two adjacent peaks shown in Fig. 7 for different MCS heating
times.
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sition of the peak. We remark that for a given positions
of the peak the local fractal dimension decreases with
the heating time to tend to the Euclidean dimension (D
= 1). For a given heating time, the fractal dimension
decreases with decreasing the length of the yardstick.
This fact confirms that the fractal curve loses its frac-
tality at small scale and keeps the fractality at a higher
scale.

5. Conclusion
In this paper, we carried out a numerical analysis of
Richardson’s method. It was shown that this method is
adequate to calculate the fractal dimension of self-similar
structure but inappropriate to calculate the fractal dimen-
sion of smooth forms. Some artefacts may appear if self-
similarity is not respected. It was shown that a correlation
might appear between the fractal dimension and some
shape factors of the images. Therefore, if some shape
parameters are correlated with a physical process (grain
size for example) then the correlation between a physical
process and the fractal dimension may be found as a con-
sequence of the non-respect of self-similarity. Thanks to
an original method, the analysis of the perimeter versus
the yardstick size allows us to extract the parameter for the
construction of the fractal curve. Our algorithm becomes
an inverse method that can be applied to detect critical
experimental features.

Using Monte Carlo simulations, we have shown that the
fractal dimension of a grain interface loses its fractality
and its self-similar structure related to the dendritic solidi-
fication during the heating process. The fractal dimension
varies with the measurement scale. It is often reported by
analytical models, which do not include the fractal struc-
ture of the interface, that the grain growth follows the
power law Ø = a t0.5. However, the power exponent over
estimates the experimental law. Energy is consumed to
destroy the fractality without any motion of the interface.
Some simulations are involved to quantify the effect of the
fractal aspect on the motion of the interface and to build
other power laws. These results would be mentioned in to
another paper.
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29. H . O . P E I T G E N , H. J Ü R G E N S , and D. S AU P E , “Chaos and

Fractals New Frontiers of Science” (Springer-Verlag).
30. G . C H E R B I T , “Fractal dimensios non entière et applications” (MAS-

SON, Paris, 1991.)
31. B . M A N D E L B ROT , “Les objets fractals” (Flammarion, Paris, 1989).
32. T. B . K I R K , G . W. S TAC H OW I A K , et al., Wear (1991) 347.
33. M. B I G E R E L L E , Thesis, Caractérisation des Surfaces et Interfaces,
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